
80

Introduction

Change management is a core information technology general control
required to support the business functions of any enterprise. While change
control is conceptually simple, the mechanics of implementation and moni-
toring require attention to detail as well as support from IT, users, and busi-
ness unit management.

At its most basic level, change management is a control system that ensures
programs, systems, and infrastructure modifications are authorized, tested,
documented, and monitored. One layer below these simple objectives is a
plethora of details that challenge even the most procedurally oriented IT
organization. As a first step towards good practices, the enterprise needs to
set up objectives at the policy level. Examples include:

Application and infrastructure changes are properly approved, both for
work initiation and later migration to production.
Proposed changes are prioritized based on business needs.
Changes are auditable and can be traced “up and down” the process.
For example, a variation in the size of an executable module can be
traced backwards to documentation authorizing a change; conversely,
an authorization for a specific change can be linked to detailed code
modifications.
Failed changes can be rolled back.
Changes to application code and configurations are tested and approved
prior to implementation in production.
Users participate in application related testing of changes.
Segregation of duties is maintained. Developers do not promote code
into production, and “move specialists” do not have access to source
code/libraries.
Procedures exist to ensure urgent/emergency changes are implemented
in a controlled and auditable manner.
Changes are “sized” so that the level of testing and review is appropriate,
given the financial/operational impact of the change.
The process for requesting a change is standardized and subject to known
procedures. For example, direct requests for changes from users to devel-
opers via phone calls are not acceptable.

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

Address correspondence to
William Yarberry,
2903 Kings Forest Dr.,
Kingwood, TX 77339.
E-mail: byarberry@iccmconsulting.net

Address correspondence to
William Yarberry,
2903 Kings Forest Dr.,
Kingwood, TX 77339.
E-mail: byarberry@iccmconsulting.net

Effective Change Management: Ensuring
Alignment of IT and Business Functions

William A. Yarberry, Jr.

President, ICCM Consulting,
Houston, Texas, USA

Information Systems Security, 16:80–89, 2007
Copyright © Taylor & Francis Group, LLC
ISSN: 1065-898X print/1934-869X online
DOI: 10.1080/10658980601144899

This article originally published as “Change Management” in EDPACS, 2005, 33(4):12–24.

81	 Change Management

The objectives listed above are examples that are
common across most organizations. Individual firms
may choose to link other requirements to the change
management process, such as completion of required
steps in a systems development life cycle (SDLC).

Implementation of effective change manage-
ment is part of the worldwide movement towards
improved IT governance and transparency. In the
United States, for example, PCAOB auditing stan-
dard 2 specifically mentions program change man-
agement as a key control element.

The Change Management Cycle

Figures 1A and 1B show the key elements of the
change management cycle. The organization’s SDLC
is in the middle of the standard (non-emergency)
process. Most of the work occurs within the SDLC

box—design, development, testing, documenting,
and obtaining approvals. Conceptually, change man-
agement serves as two bookends supporting a shelf
of books representing development, testing, docu-
mentation, and approvals. By the time the SDLC
process is complete, all the artifacts (documents,
online documentation, etc.) should be in place. The
sizing (risk assessment) process drives the artifacts
required; for example, a low-risk change would
rarely require an integration test, whereas a large
ERP installation (sized at high risk) may require all
the defined artifacts.

The individuals serving as change control manag-
ers need clear guidelines to answer questions such
as:

How is a change ranked (sized)? By number of
staff hours required to complete the project? By
intimate knowledge of the application and the

⦁

UISS 214420 (BL)

William A. Yarberry, Jr.
2903 Kings Forest Dr., Kingwood, TX 77339

713-582-6275

14 of 16

Roy Barnhill 3/19/07 4:25 PM

Request Entered

into Change

Management

System

Email request

from authorized

“Requestor” Emergency

Change?

A

Yes

Valid

Requestor?

Management approved

list of requestors

Check Requestor List

No

Send request via

email or change

management system

to authorized approver

for that business

function

Valid

Approver ?

Pre-established list of

approvers for the

business function affected

Yes

IT

management

Review

Yes

Request clearly stated

with enough detail ?

IT and User

Management

size the

change

Notify requestor : not

authorized – someone else

must request the change

Notify approver : not

authorized – someone else

must authorize the change .

No
No

Return to requestor – need

additional information

Sizing rules – what

constitutes a low , med ,

high risk?

SDLC – assign

resources , develop,

test , document

During the SDLC process the

necessary tests , approvals and

documentation are collected and

stored as “artifacts” in the change

management system

Change Management

leader/ team reviews all

required artifacts

User Acceptance

Test (UAT)

Unit Test

(technical)
Integration Test Stress Test

Required

Documentation

Turnover checklist ,

including user

communicaitons

Rollback Plan (if

change fails)

B

Change submitted

via Change

Management System

OR

Start Change Process Policies & procedures

define what

constitutes an

“emergency”

Deleted: 15

FIGURE 1A  Example Change Management Process

Yarberry, Jr.	 82

likelihood that any given change will affect cus-
tomer service? Each organization’s rules for sizing
will vary.
Who can request a change? Ideally, there should
be a separate requestor and approver for any
change. Beyond that, the requestor should be
someone knowledgeable about the application.
Uninformed requests waste resources. The fact
that an individual works in accounting does mean

⦁

he or she is qualified to request, for example, spe-
cific changes in creditworthiness calculations.
Who can approve a change, and who approves
if that individual is not available? Typically a
department head or leader would be listed as an
approver, with a more senior person serving as
an alternate. In no case should the requestor be
the same as the approver. See the segregation of
duties discussion later in this article.

⦁

UISS 214420 (BL)

William A. Yarberry, Jr.
2903 Kings Forest Dr., Kingwood, TX 77339

713-582-6275

15 of 16

Roy Barnhill 3/19/07 4:25 PM

<LE>FIGURE 1B Example Change Management Process (continued)</LE>

B
Approvals , testing and

documentation meets

requirements?

Return to developer , tester or

other party for remediation

Schedule

implementation

Move change into

production

(production move

specialist)

S
O

D
 –

 D
e

v
e

lo
p

e
r c

a
n

n
o

t m
o

v
e

 o
w

n
 c

o
d

e

Yes

Post implementation

steps , such as

documentation of

move , software

inventory, etc .

Change Complete

No

Notify all relevant

parties of

implementation

User Acceptance

Test (depending

on risk)

Integration test

(depending on

risk)

Testing

Successful ?

Emergency change

Revise /retest or revert to

standard process

No

A

Perform

Informal Risk

Analysis

Assign

resources

Change made in

test environment

Testing level

based on risk

analysis

UNIT testing

(always required if

possible to do)

Approval by IT

management & User (if

appropriate)

Approved?

Move change into

production

(production move

specialist)

Post implementation

steps, such as

documentation of

move , software

inventory , etc.

Change Complete

Notify all relevant

parties of

implementation

Yes

Yes

Return to developer , tester or

other party for remediation

No

2

Deleted: 15

FIGURE 1B  Example Change Management Process (continued)

83	 Change Management

What is an emergency? Change management poli-
cies should clearly define the criteria for an emer-
gency change. Since emergency changes receive
less scrutiny and may occur at odd hours, the
process to handle them should be clearly defined.
Also, the term “emergency” is not related to “prior-
ity.” Some organizations define emergency changes
as those necessary to fix something that literally
stops working or suddenly creates incorrect results
(it worked yesterday but does not work today).
Others may define them as a change required to
satisfy an urgent, immediate, and unanticipated
business need which, if not satisfied, will result in
significant loss to the organization.
What are the artifact requirements? The end of
the change management cycle is analogous to
a day in court. The “jury” is presented exhib-
its showing what happened during the systems
development life cycle—was document #030.10,
emergency backout plan, prepared in accordance
with policy? Are results from the user acceptance
testing attached to the change management ticket?
The change control manager can only make these
assessments if the requirements are clearly docu-
mented. For example, an integration test is typi-
cally not required for an enhancement to a sales
report.

Change Control
as the “Enforcer”

Robert Burns’ observation that the best laid plans
often go astray applies equally well to systems devel-
opment. There are many roadblocks to success: the
schedule for each phase may become compressed
as market forces escalate the priority or legislation
driven deadlines get closer. Approvals, testing, or
documentation may be omitted or reduced in scope;
busy developers may regard some of the steps as
bureaucratic impediments to productivity. One
counter to these shortcomings is a robust change
control system. It serves as the final checkpoint to
validate compliance and to prevent promotion of
changes that are unapproved, improperly tested, or
inappropriately scheduled. A good change control
system helps ensure that the sins of the developer
will not see the light of day—bad code or configura-
tion changes will be rejected.

⦁

⦁

Sizing and Risk Ranking

An effective change management system requires
just enough approval, testing, documentation, and
review. For example, a report heading change does
not require the same level of review as a change in
depreciation method. A sizing and risk ranking pro-
cess helps IT respond to business needs quickly by
minimizing the work required for small changes and
strengthening requirements for high-risk changes.
Table 1 shows a typical sizing/risk ranking scheme
(it will vary considerably by organization).

The individual or committee performing the initial
sizing may override these mechanical guidelines if,
for example, a small change represents a significant
risk to the organization. The purpose of the sizing is
to assess the artifacts (tests, approvals, documenta-
tion, etc.) required for the change to be allowed to
move into production.

Fortunately, systems changes follow Pareto’s prin-
ciple; 10-20 percent of the changes represent 80-90
percent of the risk. Since most of the changes are
low risk, the need for speedy response to business
requests can be met while the higher risk changes/
projects receive appropriate scrutiny. To correctly size
projects, the organization needs to do three things:

	1.	Size the change, using the expertise of the
developer(s) and an IT manager(s). This roughly
catalogs the proposed change in a “small” versus
“medium/large” buckets.

	2.	Determine whether additional sizing effort is
needed. For example, a seemingly innocuous
change may affect downstream applications. For
projects that may require considerable resources
to complete, a better sizing allows a better return
on investment calculation. Since it takes some
resources just to complete the sizing, this step is
necessary for complex changes.

	3.	Re-evaluate the sizing if the project is more com-
plex than originally thought.

Table 1  Sizing Categories for Changes

Size or Risk Ranking Estimated Hours Estimated Cost

Low risk/small project <100 <$15,000
Medium risk/

medium project
100–1,000 $15,000–$150,000

High risk/large project >1,000 >$150,000

Yarberry, Jr.	 84

Generally, developers do not savor paperwork,
even if the forms can be submitted electronically.
Hence, there is a temptation to classify changes as
smaller than they really are; a small sizing requires
less review, fewer online forms, and a speedier
delivery to the user. The person doing the work may
contribute technical and application background
information but should not be responsible for the
final risk ranking.

Artifacts

Before any change goes into production, the exis-
tence and quality of artifacts must be reviewed. Going
beyond traditional systems documentation, artifacts
detail the life history of any change or project. They
answer questions such as “what is the evidence
of testing, approval, financial analysis, operational
review, and conformity to technical standards?” Dur-
ing the review of artifacts, a well-intentioned drive
to perfection may arise. Impractically high standards
weaken the change control system. During the
implementation of a change management system, it
is easy to list requirements and label them all as
mandatory. To use an analogy, generals may easily
move pins around on a map, but the troops on the
ground must go through the formality of “making it
happen.” The artifacts required should be as mini-
mal as possible, consistent with the organization’s
appetite for risk. More depth is certainly welcome,
but if requirements are excessive, the system will
break under the day-to-day pressures of production.
Reasonable standards persist.

Following is an example list of artifacts. These
will vary based on the organization’s SDLC and spe-
cial needs. Change management is not limited to
control and risk issues. The CIO may have a specific
initiative, such as marketing meetings with users,
she wants to ensure take place. These initiatives
take their place on the checklist, along with backout
plans, as required artifacts.

Scope statement
Financial assessment
Technical assessment
Functional specifications
Business requirements
Project plan
High level design
Unit test plan
Integration test
Regression test
Stress/capacity test
User acceptance test
Production turnover checklist

Testing

Few would argue the need for testing a change or
new system. The challenge is to perform the right
kinds of tests (unit, integration, and regression) so
that reasonable efficiency is maintained without
undue risk. The first step is to develop a matrix that
relates the risk of the change to the level of test-
ing. Table 2 presents an example risk based testing
matrix.

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

⦁

Table 2  Testing Requirements Based on Risk

Change Type Change Description Unit Integration Regression UAT*

Low risk Affects only one system; easy to backout; minimal
impact if it fails

Y N N Y

Medium risk Crosses multiple applications; could affect operations
and financials

Y Y N Y

Heavy risk Crosses multiple applications; backout process
extensive; could affect entire network; major
financial/operational impact

Y Y Y Y

Infrastructure only Changes to hardware, middle ware, operating system
and other IT elements not directly related to
applications

Y (if possible) Y (if applicable) N N

*	 User Acceptance Testing

85	 Change Management

Testing phases vary somewhat in scope from one
organization to another, but generally the following
are included:

Unit test: Code within a program or module is
tested with sample data and simple scenarios. For
example, a firm may decide to change sales com-
missions from 10.5 percent of sales price to 11.0
percent. The developer runs the modified pro-
gram in a test environment, compares results to
hand calculated totals, and saves a screen print
of the results as proof that he has unit tested the
change.
Integration test: A change is tested in both the
application affected as well as downstream sys-
tems. For example, a change in a human resources
system could result in an incorrectly formatted
parameter file that feeds a data warehouse used by
other applications. The integration test runs trans-
actions through the application all the way to the
last downstream application that would reasonably
be affected. In most cases, only the immediately
succeeding modules after the changed application
need be included. Professional judgment must be
used to determine whether the third or fourth
applications in line should be tested.
Regression test: A complex and typically time-con-
suming “test deck” that includes specific transac-
tions considered key to the proper functioning of
the software. For a full scope enterprise resource
planning (ERP) system, a regression test might
include more than 100 individual tests, such as
“apply a credit to accounts receivable using a cus-
tomer number known to be incorrect and then
note whether it is rejected.” Creating a thorough
regression test a significant effort for both IT and
user personnel. Of course, the payoff is significant.
A portion of a sample regression test is shown in
Table 3; large production systems will typically
have many more steps. The next test, user accep-
tance, is the final checkpoint before production
migration.
User acceptance test (UAT): Compiled solely by
the business user, the UAT uses business terms to
describe what any change should accomplish. This
test focuses specifically on expected results par-
ticular to the change. To support Sarbanes-Oxley
section 404 compliance requirements, test results
should be maintained in the change management

⦁

⦁

⦁

⦁

system. Screen prints, reconciliations, and other
summary results are typically required; massive
binders of paper showing line item testing are not
normally required to show compliance.

“Hybrid” Elements

The classical focus of change management
includes lines of code, objects, schemas, and other
components of the organization’s core applications.
However, many large systems, such as ERPs (e.g.,
Oracle and SAP), can be modified significantly by
setup changes that are solely under the control of
the end user. For example, an appropriately autho-
rized user in the finance or accounting department
could set all new fixed assets to be setup with double
declining balance as the depreciation method rather
than straight line. Traditional change control pro-
cesses would not include a review of these changes
because they are not implemented by the IT group.

One point of view is that such changes are no
different than any other major business decisions,
many of which are made without consultation with
the IT group. Clearly, controls within the business
units should include segregation of duties and sec-
ond-level review for any major accounting or policy
change. However, a more realistic perspective rec-
ognizes that systems have grown increasingly com-
plex and parameter/setup modifications can change
processes in ways not contemplated by the change
initiator. While users may have a thorough under-
standing of the system functionality for a particular
part of the business, they may not have occasion to
learn parts unrelated to their day-to-day duties.

In contrast, the IT group is charged with main-
taining the entire system and so may be aware of the
“downstream” effect of a major parameter change.
For medium to major risk changes, a dual user-IT
review is usually optimal.

Patches and Releases

The inner architecture of in-house written code
is often, though not always, reasonably well known.
Any changes to be introduced are likely under-
stood in the context of the entire system. In-house
changes could potentially be divided or rearranged

Yarberry, Jr.	 86

due to the level of knowledge about the product (the
developers can see “inside the black box”). In con-
trast, packaged software from commercial vendors
is typically introduced “as is.” The patch or upgrade
in its entirety is moved into production; incremental
modifications are not possible. If the change fails,
it must be completely backed out and the previous
version restored.

As a consequence, the emphasis for changes to
purchased software is relatively more towards inte-
gration and regression testing. While vendor release
notes are useful, there is some level of uncertainty
that demands thorough testing across all affected
modules. In addition, strong library/release controls
are necessary to ensure backouts are performed cor-
rectly when needed. Of course, in-house changes
sometimes fail in production and have to be backed
out as well. Ultimately, it is the complexity of the

change, including the number of modules/systems
affected, that drives the risk and concomitant level
of testing/review.

Urgent/Emergency Changes

Assume an organization’s ERP stops during busi-
ness hours. Possibly the underlying Oracle database
has become corrupted or a key server has myste-
riously lost both the primary and backup power
supply. Regardless of the reason, a “hard down�”
condition demands a high-speed fix. The question
then becomes, does a three-alarm emergency jus-
tify making changes without testing and with only a
single approver?

�	 Sometimes called “severity one.”

TABLE 3  Partial Sample of Regression Test

Section Step Prerequisite Test Case Description Module Lead
Estimated

Hours Status

1. Define Items 1.1 Define new item category in the
Inventory Category Set for use in the
new item

Inventory Jane D., John P. 0.20 Pass - 5/18

1.3 Define a new item using template Inventory Jane D., John P. 0.10 Pass - 5/18
1.4 1.3 Update master controlled attributes (i.

e., COGS and Sales accounts)
Inventory Jane D., John P. 0.10 Pass - 5/18

1.5 1.3 Enable item in child organization and
apply Org level template

Inventory Jane D., John P. 0.15 Pass - 5/18

1.6 1.3 Update item category set with new
category

Inventory Jane D., John P. 0.10 Pass - 5/18

1.7 1.3 Update organization attributes (i.e.,
Planner and Lead-time)

Inventory Mike T. 0.10 Pass - 5/18

1.8 1.3 Enter item standard cost for Buy part in
inventory organization (Dept 45)

Inventory Charles G., John P. 0.22 Pass - 5/18

1.9 1.3 Print Item Definition Detail Report Inventory Jane D., John P. 0.25 Pass - 5/18
1.11 1.6 Create and verify Z43 Planned Safety

Stock
Inventory John D., Alfred A. 0.75 Passed

1.12 1.6 Create and verify an Inventory Planned
Safety Stock

Inventory Shawn K., Po W. 0.25 Passed

1.13 12.1 Cycle Days Supply update program Inventory Alfonzo W. 0.50 Passed on
retest

1.14 12.1 Cycle Post Processing Lead-time update
program

Inventory Mary L 0.50 Passed on
retest

2. Departments
& Routings

2.1 None Define Resources Bill of Mat Jane D., John P. 0.50 Passed

2.2 2.1 Define departments and assign
resources to departments

Bill of Mat Jane D., John P. 0.20 Passed

….. … … …………………… …. ……. ….. …….

87	 Change Management

The answer depends on the nature of the fix. If
a server fails and is replaced by an identical unit,
little testing may be required, assuming that all files
and the operating system have been successfully
restored from backup media. Applications, on the
other hand, require testing, even under emergency
conditions. The testing may not be extensive, but
raw code thrown into production without a test is
unacceptable.

If an emergency change is successful, the modi-
fied system is obviously now in production status.
Assume the change is significant. Under the nor-
mal process, not emergency, a user acceptance test,
integration, and/or regression test may be required,
along with formal signoff. Should a hastily imple-
mented change, now in production, be retroactively
tested? The hard-nosed answer is yes—the changes
may result in errors not yet detected. On the other
hand, production is a strong, albeit dangerous, testing
ground. Some organizations compromise by requir-
ing IT management and responsible users to docu-
ment reasons for retroactively testing or not testing.
IT organizations must rationalize testing dollars.

Integration of Code (Micro)
and Enterprise (Macro) Level

Change Control Systems

A robust enterprise change management system
provides end-to-end accountability. A change, such
as the addition of a new ERP function, should be
supported by an audit trail of all its constituent code
or script changes. For example, assume a payroll
system is modified to account for pay based on a
new piecework formula. An entry in the macro level
change control system (e.g., NetResult’s Problem
Tracker) should contain a detailed description of the
change, testing by both users and IT (unit, integra-
tion, regression, etc.), approvals to start the work,
and authorization to move it into production. The
macro entry (e.g., payroll change #12309) should
also include a link to a lower level (micro) change
management/versioning system, such as Serena
Corporation’s PVCS. The micro change management
system will document the change control number
found in the macro level system.

As a result, changes can be traced both backward
and forward. Without a tie in, there is no assurance

that changes at the code, script, object, or other
executable level are properly authorized. In other
words, an auditor could determine, via length/date
comparison, that module xyz.exe changed from
one month to the next. Without the embedded
links to the specific authorization, however, it is not
clear which approval serves as the approval for the
change.

Selecting the Right Change
Management System

Ideally change management is integrated with an
organization’s SDLC, problem management/incident
reporting, directory services (LDAP), and autho-
rization infrastructure. With the integration of all
these control elements, the degree of control over
IT changes increases disproportionately. All par-
ties find the system easier to use and compliance is
more likely than with stand alone systems requiring
duplicate entry. It is important to note that although
the SDLC should be linked to and integrated with
change management, the two processes are sepa-
rate governance systems. To be effective, change
management should not assume too many duties.
It asks whether all the work performed relative to a
change or project is adequate to allow a move into
production. It is not a comprehensive best practices
enforcement system.

Versioning

There are many development environments on
the market such as Eclipse, IBM Websphere Studio,
SAP NetWeaver Developer Studio, and Visual Stu-
dio.net. Within these environments, code, scripts,
database schema changes, and documentation need
robust version controls providing the following min-
imum functions:

Check in/check out;
Visual differencing (highlight changes between
versions down to the line of code or script
variance);
Versioning for schemas, scripts, JCL, documenta-
tion, and other system elements; and
Audit trail of changes.

⦁

⦁

⦁

⦁

Yarberry, Jr.	 88

Authentication and Workflow

Few would regard hard copy-based signatures as
an efficient means to document change authoriza-
tions. Nonetheless, a surprising number of organiza-
tions continue to use manual signatures on paper as
evidence of management approval of changes. Elec-
tronic authentication, on the other hand, provides
many benefits beyond the elimination of inefficient
manual processes. A change management system
that integrates with LDAP� taps into the organiza-
tion’s existing security infrastructure. Using current
names and email addresses, notifications of pending
and completed changes may be sent as the change
request flows through the system. Finally, segrega-
tion of duties can be enforced by setting up tables
relating specific change control authorities to organi-
zational levels and specific individuals.

Segregation of Duties

Maintaining proper segregation of duties in infor-
mation technology is an ever-present hurdle. For
example, a small IT group may have only one net-
work administrator. Who reviews network changes?
The answer has to be a second party, even if that
individual is not a technical peer. Imperfect seg-
regation of duties is better than none, even if the
reviewer is a peer developer. The practical inability
to achieve an ideal change control environment does

�	LDAP (lightweight directory application protocol) is an open
and configurable protocol; a wide variety of information about
an organization, including security, can be housed within its
structure.

not justify the omission of a workaround. A strong
change management system prohibits changes that
have not been reviewed by at least one person other
than the individual doing the work. Table 4 shows
the most commonly accepted segregation of duties
model for change management.

Mechanics and Mind-set

Most developers learn programming basics either
formally, in technology classes, or informally via on-
the-job training. In any case, most developers’ first
products are likely to be private programs. In other
words, the same person writes the code from the
bottom up, tests the program, and perhaps docu-
ments it. However, systems written for an organi-
zation’s business/production environment are public
programs, used by multiple individuals, documented,
tested, potentially reusable and part of larger units.
Public� programs do not belong to the developer.
Hence, there is a mind-set change required to miti-
gate the tendency towards a private program per-
spective. Change control, documentation, and other
standard controls practices need continual promo-
tion and support, otherwise systems devolve into a
mere concatenation of private programs and system
fiefdoms.

To ensure developers, users, and management
participate in change control and avoid the tendency
to privatize, the mechanics of the process should be
straightforward, clear to all parties, and supported by
management. Good practices include the following:

�	 “Public” here is defined as belonging to the organization that
ultimately pays for the system (no relation to “public domain”).

Table 4  Change Management Segregation of Duties Model

Assigned duty Requestor Approver Developer
Tester

(from user perspective)
Production

move

Initiate change requests (requestor)  x x x x
Authorizes and approves change requests (approver) x  x x x
Makes changes in development environment x x  x x
Tests the change (from end user perspective)   x  x
Moves change into production x x x x 

Note:	 “X” indicates duties cannot overlap (e.g., same individual cannot perform both functions)

89	 Change Management

Weekly meetings set up specifically for discussion
and approval/disapproval of changes. Participants
from multiple IT groups may identify potential
conflicts.
Schedules and lead times for approvals, testing,
and production moves. For example, managers
cannot be expected to review complex changes
one hour before the weekly meeting. Typically
a schedule of lead times related to change size
is published. Change control procedures may
require one, two, and five days for “lite,” medium,
and large changes, respectively.
Informal presentations for medium-high risk
changes. Peer review offers many benefits includ-
ing the avoidance of scheduling conflicts and
identification of problems by those not directly
participating in the change implementation.

Change Management Specialist

For a large organization, a change management
specialist provides the practical support necessary
to keep the policies and procedures working at the
day-to-day level. Specialists review submissions,
report on procedure failures, provide management
with high level reporting (e.g., percentage of back-
outs by month), train new participants, and evaluate
the quality of documentation. Specialists can also
perform ad hoc testing to monitor compliance.

Time pressures may tempt developers, users, and
other change management participants to skip or
skimp on required forms, even if the functionality is

⦁

⦁

⦁

automated. The specialist can offload some of that
work and rationalize the system over time.

SUMMARY

At first glance, the full change management pro-
cess appears bureaucratic and complex. However,
it can be made to work efficiently if the tasks are
batched and the participants meet regularly (a
weekly change management working session is typi-
cal). Templates, workflow software, and electronic
signatures smooth the process.

Admittedly change management is hard to do
well. Some organizations have made top-level deci-
sions to implement change control without under-
standing the consequences. If, for example, the
policy requires integration testing for medium-high
risk changes and the IT staff has never seen an inte-
gration test template, then the implementation will
be flawed. But with electronic tools, an incremen-
tal approach and management support, a sustain-
able and auditable change management system can
become a vital component of the IT general control
infrastructure. And, of course, it is essential for good
IT governance.

Acknowledgement

Special thanks to Carolyn Treen, information tech-
nology consultant, in Boston, Mass., for her contri-
butions to this article.

